ENVIRONMENTAL CHEMISTS

Date of Report: 02/03/98 Date Received: 01/15/98

Project: Metro Self Monitor, PO #M59727

Date Extracted: 01/29/98 Date Analyzed: 01/29/98

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLE FOR TOTAL METALS BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Results Reported as mg/L (ppm)

Sample ID	<u>M59727</u>	Method Blank
Analyte:		
Chromium	0.72	<0.05
Copper	0.54	<0.05
Nickel	0.75	<0.05
Zinc	<0.05	<0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 02/03/98 Date Received: 01/15/98

Project: Metro Self Monitor, PO #M59727

QUALITY ASSURANCE RESULTS FOR TOTAL METALS BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Laboratory Code: 801043-01 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference	Acceptance Criteria
Chromium	mg/L (ppm)	0.72	0.97	30 vo	0-20
Copper	mg/L (ppm)	0.54	0.67	21 vo	0-20
Nickel	mg/L (ppm)	0.75	0.73	3	0-20
Zinc	mg/L (ppm)	< 0.05	0.06	nm	0-20

Laboratory Code: 801043-01 (Matrix Spike)

	Reporting	Spike	Sample	% Recove	ery % Recovery	Acceptance	
Analyte	Units	Level	Result	MS	MSD	Criteria	RPD
Chromium	mg/L (ppm)	5	0.72	103	110	80-120	7
Copper	mg/L (ppm)	5	0.54	96	99	80-120	3
Nickel	mg/L (ppm)	10	0.75	105	104	80-120	1
Zinc	mg/L (ppm)	5	< 0.05	94	102	80-120	8

Laboratory Code: Laboratory Control Sample

Representation of the second o		Reporting	Spike	% Recove	ery % Recove	ery Acceptanc	e		
j.	Analyte	Units	Level	LCS	LCSD	Criteria	RPL)	
	Chromium	mg/L (ppm)	5	103	102	80-120	1	-	
	Copper	mg/L (ppm)	5	104	104	80-120	0		
	Nickel	mg/L (ppm)	10	105	105	80-120	0		
	Zinc	mg/L (ppm)	5	107	106	80-120	1		

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

vo - The value reported fell outside the control limits established for this analyte.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Jensen, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

February 3, 1998

DUPLICATE COPY

INVOICE #98ACU0203-4

Accounts Payable Alaskan Copper Works 628 South Hanford St. Seattle, WA 98134

RE: Project Metro Self Monitor, PO #M59727: Results of testing requested by Gerry Thompson for material submitted on January 15, 1998.

FEDERAL TAX ID (b) (6)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Jensen, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

February 3, 1998

Gerry Thompson, Project Manager Alaskan Copper Works 628 South Hanford St. Seattle, WA 98134

Dear Mr. Thompson:

Included are the results from the testing of material submitted on January 15, 1998 from your Metro Self Monitor, PO #M59727 project.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Kurt Johnson Chemist

Enclosures ACU0203R.DOC